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SUMMARY

Using the Cal-Tech analog computer, structural analyses have been
made for four straight multicell wings. Wings with aspect ratios of 2
and 4 with rectangular and biconvex cross sections have been considered.
The wings are supported rigidly along two lines at the faces of the fuse-
lage. Concentrated loads are applied at the intersection points of the
ribs and spars. The effects of shearing strains in the ribs and spars
are included. Deflections and all internal force quantities have been
recorded as well as vibration modes and frequencies.

INTRODUCTION

The structural analysis of a thin multicell wing of low aspect ratio
presents a rather difficult problem if one wishes to obtain better accu-
racy than can be obtained from elementary beam theory. Four such wings
have been analyzed on the Cal-Tech analog computer for various static
loads and in vibrational motion. Wings with rectangular and biconvex
cross sections with aspect ratios of 2 and 4 have been analyzed. The
wings are assumed to extend through the fuselage and to be supported
rigidly along two lines at the faces of the fuselage.

When cross sections of a thin wing have a horizontal axis of sym-
metry, the wing deforms under load in the manner of a plate. Analogous
circuits for elastic plates were given in reference 1. The structural
theory and analogous clrcuits for multicell wings are given in refer-
ence 2. The present paper 1is devoted to a presentation of the results
of computations based upon the method of reference 2. Comparisons with
elementary beam theory are given wherever possible. In the case of
bending loads the variation from beam theory becomes appreciable only at
very low aspect ratios. In the case of torsional loads the variation
from beam theory is more pronounced becasuse of the occurrence of normal
stresses due to warping restraint. The graphical illustrations represent
only a small portion of the date which were obtained from the computer.
The complete results of the computing work have been omitted for publica-
tion but are given in the tables in the manuscript copy of this report.

et e e et e i~ PN g o i e e g R - = o



2 ) NACA TN 3113

This copy 1s available for loan or reference in the Division of Research
Information, National Advisory Committee for Aeronautics, Washington, D. C.
The present investigation was conducted at the California Institute of
Technology under the sponsorship and with the financisl assistance of the
National Advisory Committee for Aeronsutics.

SYMBOLS

A area of a cell
Al transformed area used in shear-flow calculations
Ajyn aree. of shear web of ith rib in nth bay
Ajsm area of shear web of jth spar in mth bay
c chord of wing
d transformation or carry-over factor
Dy 3 bending stiffness of ith rib at jth spar
Dji bending stiffness of Jjth spar at ith rib
Dyn twisting stiffness of a panel
E Young's modulus

frequency
G shearing modulus of elasticity
hj depth of jth spar
I ' moment of inertia of skin per unit of width
I 3 moment of inertia of jth spar
Ip total moment of inertia of cross section
J torsion constant

L distance from support line to wing tip
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bending moment

bending moment in ith rib at jth spar

bending moment in Jjth spar at ith ridb

concentrated load

load at ith rib and jth spar

shear flow

shear flow in web of Jjth spar

statically determinate part of qy

indeterminate part of qj

cellular shear flow in nth cell
flexibility of spar
flexibility of rib

interaction flexibility, Agiss[Dys(L - nygnys)

interaction flexibility, xiuji/nij(l - uijuji)

twisting moment

twisting moment computed from beam theory
transformer numbers

shear
shear in ith rib at nth bay

shear in Jth spar

shear in jth spar at mth bay
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statically determinate part of Vj
deflection
deflection from beam theory

deflection at 1th rib and jth spar
deflection due to shearing strains only

deflection of & beam from difference equations
ratio of length to width of a well segment

ratio of depth to width of web of Jth spar

rotation of normal in Ith rib in nth bay

rotation of normal in jth spar in mth bay
Jum in a function across ith rib

Jump In a function across Jjth spar

width of structure assoclated with ith rib

width of structure associated with jth spar

width of mth bay between ribs
width of nth bay between spars

Poisson's ratio

equivalent chordwise Poisson's ratio defined by
equation (1)

equivalent spanwise Poilsson's ratio defined by
equation (1)

normal stress
spanwise normal stress

normal stress computed from beam theory
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Zn summation about nth cell
T shearing stress
Ty, shearing stress computed from beam theory

DESCRIPTION OF STRUCTURES

In order to arrive at a reasonasble set of dimensions for the struc-
tures to be analyzed a few design computations were made by using ele-
mentary beam theory. The complete missile was assumed to weigh 20 kips
and to be designed for an ultimate load factor of L. The allowable nor-
mal stress ln the skin was assumed to be 20 ksl and the allowable shearing
stress in the spar webs wes assumed to be 12 ksi. The loading was assumed
to be uniformly distributed. The thickness of the rib webs was arbitrarily
assumed to be one-half of the value determined for the spar webs. The
resulting structure for an aspect ratio of 2 with a rectangular cross sec-
tion is shown in figure 1.

In order that the skin might carry a normal stress of 20 ksi with-
out buckling it would be necessary to reduce the spacing of the spars to
approximetely one-half of that shown in figure 1. This would provide
13 spars rather than 7 spars. The limitation to seven spars was dic-
tated by the amount of electricel equipment which was available. Each
spar which is shown in figure 1 should be considered as being equivalent
to two spars in the structure as it would be built. Connection angles
and shear web flanges have been omitted for convenience.

Details of the wing with a rectangular cross section and an aspect
ratio of 4 are shown in figure 2. The structural chord of 72 inches has
been retained for all of the wings. Also the fuselage bay has been
assumed to be one-third of the total structural span for all wings. The
allowable shearing stress in the spar webs was reduced to one-half of the
previous value or 6 ksi. In order to develop this strength in the deeper
web some form of stiffening against shear buckling would be required.

The dimensions of the wings with biconvex sections have been chosen
more or less arbitrarily to give about the same strength as that provided
by the rectangular cross sections. The dimensions of the wing of aspect
ratio 2 are shown in figure 3. For the wing having an aspect ratio of L4
and a biconvex section the dimensions are shown in figure 4.

In order to record the computed results in tabular form a numbering
system for points on the plan form has been adopted as shown in figure 5.
A number has been assigned to each point at which some quantity is measured.
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In presenting the results of the analyses it is only necessary to give
the results for one quadrant of the plan form since the layout of the
structure has double symmetry in its plan. The points at which concen-
trated loads are applied are shown in figure 6. The deflections and
bending moments are glso measured at these points. The points at which
shears are determined are shown in figure 7. In figure 8 the points
are shown at which twisting moments are determined. These twisting
moments may be considered as average values over the panels.

A few sample calculations of structural constants are included to
show in detail how these quantities are determined. The calculation of
stiffness constants 1s made according to the formulas contained in ref-
erence 2. The wing is assumed to be constructed of an aluminum alloy
having the material properties shown in table 1. Calculations for the
spanwise and chordwise bending stiffnesses at an interior point of the
wing with rectangular cross section and aspect ratio 2 are given below.

 ———— ' 2“——-_’

145 e 4"

For the spar:

16"

2 6
31 12 X 0.16 X (3.84) X 10.k x 10 + ix 0.14 x (3.68)3 X 10.4 x 106
2 0.91 12

(161.8 + 6.0) x 10°

167.8 x 10® 1b-in.2

n

161.8
= 0. = 0.2
Mt (167.8) X 0-3 »
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For the rib:

07— f+— 4"

(3.84)2 10k x 106

Dyy = 16 x 0.16 x > .01

1
+ =% 0.07 x (3.68)° x 10.4 x 108

(216 + 3) x 106

2

219 x 10® 1b-in.

byy = (g%g) X 0.3 = 0.29

It 1s convenient in the computation of structural constants to intro-
duce spanwise and chordwise Poisson ratios according to the following
definition:

33054 ) My 5 _ _MET
)‘,j N 1 -y

5 (1)

The relation between bending moments and curvatures may be expressed in
the following form:

A B ALB
i"im Jin _
Dyy ~ + 1y3Dyy y = Mgy (22)
B AsB
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In order to design the analogous circuits, equations (2) must be
inverted to obtain formulas for the curvatures in terms of the bending
moments. The coefficients of such equations may be referred to as
flexibilities. Formulas for the flexibilities become:

A
Ry =
Dya (L = wageys)
_ A
Dig(L - miguys)
Agtig
R]Q' =

Dys (T - wighgs)

Aikgq

Dyg(L - mighys)

A sample calculation of the numerical values for the flexibilities at
an interior point of a rectangular section with aspect ratio 2 are:

1 - pyguyq = 1 - (0.289)(0.296) = 0.914

16

= = 0.1043 x (10)~®
167.8 x 10° x 0.91k

12 6
= = 0.0600 x (10)~

219 x 106 X 0.914
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= 12 x 0.296 = 0.0231 X (10)'6

167.8 x 106 X 0.91k4

Ryx = 16 x 0.289 = 0.0231 X (10)“6

219 x 1o6 x 0.91h

A sample calculation of the shearing constant of an interior spar is:

1 1
= - 0.0305 x (10)~®

MGy 16 x & x 100 x 0.1k x 3.68

A calculation of the shearing constant of an interior rib is:

1 _ 1 = 0.0809 x (10)~®
MCGAin 12 x 4 x 100 x 0.07 x 3.68

A sample calculation of the twisting constant for the skin is as follows:

2
GI=hxlo6xo.l6x-(3'+‘u)

=Lh.72 x lO6

GI 16 x h.72 x 10°

Mo (%;)_l_ - - 0.1589 x (10)~°
Dmn
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LOADING CONDITIONS

Since the plan form of each wing has two axes of symmetry the
loading may be divided into four types according to the symmetry con-
ditions. Loads which are symmetrical about the midchord line are
referred to as bending loads and loads which are antisymmetrical about
the midchord line provide the torsional loading. Since the loads maey
be symmetric or antisymmetric about the plane of symmetry of the air-
craft the following four types of loading may be considered: Symmetric
bending, symmetric torsion, antisymmetric bending, and antisymmetric
torsion.

For the static loading conditions the loads are assumed to be
applied as concentrated forces at the points of intersection of the ribs
and spars. The loads are applied as a group of four forces, one in each
quadrent of the plan form, to form a doubly symmetrical arrangement. In
designing the snalogous circuit and in recording the results of the analy-
sis 1t is only necessary to consider one quadrant of the structure. A
circuit was designed to correspond to the first quadrant of the plan form.
Each point of this quadrant was loaded independently. The four types of
loading were obtained by using the appropriate boundary conditions for
the quadrant along the lines of symmetry of the plan form.

Four wings, each to be loaded with loads having four types of sym-
metry, provide 16 cases. In each case there are 16 loadings. Such a
complete program of computation would be too extensive to be Jjustifigble.
Hence it was decided to load all points in 4 cases and to load only the
tip points in the remaining 12 cases. The choice of loading points for
the various cases is shown in table 2. In order to make a further saving
in the calculstion work for those cases wherein all points were loaded,
the internal force quantitles were not recorded when the four points in
the fuselage bay were loaded. Defliections were, however, recorded in all
cases.

BOUNDARY CONDITIONS

Along the leading edge of the wing the chordwise shear, chordwise
bending moment, and chordwise twisting moment must vanish. Along the
wing tip the spanwise shear, spanwise bending moment, and spanwise
twisting moment must venish. Along the line of support the vertical
deflection must be zero. It has also been assumed that the wing is
clamped along the support in such a msnner as to prevent chordwise rota-
tion of the normals to the elastic axis of the rib which lies over the
support. This clamping, however, does not prevent the rib from warping
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out of its own plane. This assumption that the normals in the rib do
not rotate provides a relation between spanwise and chordwise bending
moments over the support. Since B4, is zero at all points along the

support the quantity AsB;, may be set equal to zero in equations (2).

This gives the following formule for the chordwise bending moments in
terms of the spanwise bending moments:

D
ij
Miy iiji 31 3

The center lines of the plan form are boundary lines for the gquad-
rant of the wing. Along these lines the boundary conditions are symmetry
conditions and are determined from the known symmetry of .the applied load.
It can be shown and it is obvious from physical intuition that the sym-
metry of the deflection surface is the same as the symmetry of the spplied
load. From the known symmetry of the deflection surface the symmetry con-
ditions of the various derivatives can be determined. From this informa-
tion the symmetry conditions for the internal forces may be determined.
This determingtion of the symmetry conditions for the internal forces
follows the arguments which are customary in elastic plate analysis.

ANAT.0GOUS ELECTRICAL. CIRCUITS

Since all of the four wings to be analyzed have the same general
arrangement of ribs and spars, the same arrangement of circuit elements
may be used for all of the wings. The complete circuit consists of three
planar circuits which are shown in figures 9 to 11l. These circuits are
similar to those given in reference 1 except that they include the effect
of shearing strains in the ribs and spars. The design of the circuits is
in exsct agreement with the methods of reference 2.

For each type of loading, changes along the planes of symmetry are
required to satisfy the conditions of symmetry. These changes are indi-
cated on the drawings of the circuits. Along the leading edge and wing
tip the natural boundary conditions are sutomatically satisfied by the
circuit. Along the support the deflections and chordwise rotations of
normals are made to vanlsh by grounding the proper nodsl points in fig~
ures 9 and 11,
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ANATYSIS OF WINGS BY BEAM THEORY

In presenting the results of the analysis it is of particular
interest to compare resulis obtained from the analog computer with solu-
tions obtained by epplying elementary beam theory to the wing. In tor-
sion the expression "elementary beam theory" is used to indicate that
stresses and displacements at a cross section are computed from the sec-
tion torque by using formulas from the solution of St. Venant. In
bending action "elementary beam theory" is based on the assumption that
plene sections remain plane and in addition that cross sections are pre-
served by ribs which are rigid in their own plane. This differs from
the bending theory of St. Venant which predicts a chordwise camber. All
comparisons in this paper will be made with elementary beam theory.

The shear flows in torsion were computed by using the numerical pro-
cedure of reference 3. An example of this procedure is given in table 3
for the biconvex section of the wing of aspect ratio 2. The solution is
obtained by a process of successive corrections and checked by a cycle
of iteration. Because of the symmetry of the cross section about a ver-
ticel axis it is only necessary to write the computation for one-half of
the section. At each step in the calculations it must be remembered that
the shear flows in torsion are symmetrical about the center line. The
torsion constant is also computed in table 3. The torsion constants for

all of the wings are given in table 1.

The shear flows in bending may be divided into a statically deter-
minate part and an indeterminate part. This division may be indicated
for the shear web of the jth spar as

1y = (s + (h (1)

It is convenient to define the statically determinate shear flows in the
top and bottom skin as being zero. The statically determinate shear flows
in the spar webs are computed from shears which are proportional to the
moments of inertia of the spars as follows:

(a5)e5 = (Va)s = V<Iﬁj> ‘ (5)

The statically determinate shear flows are in equilibrium with the
normal stresses and are also in equilibrium with the external loads. The
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indeterminate shear flows are completely self-equilibrating and are
determined by the condition of continuity of warping displacements. The
indeterminate shear flows consist of cellular shear flows which are anti-
symmetric gbout the vertical axis of symmetry of the cross section. The
indeterminate shear flow in a spar web may be expressed as the difference
between the cellular shear flows in the two adjacent cells as follows:

(23)1 = "% + 9 (€)

In writing equation (6) it is assumed that the jth spar lies between
cell number n and cell number n - 1.

The condition of continuity of warping displacements leads to a
difference equation governing the cellular shear flows as follows:

“%3+1941 + (znd')qn - @391 T "%+l (‘13+1)s T ooy (q,j)s (7)

Equation (7) is written for the nth cell. The coefflcients are computed
as ratios of length to width of the wall segments. The system of equa-
tions corresponding to equation (7) has a matrix of coefficients which

is the same as for the torsion case. Consequently the numerical procedure
of reference 3 may asgain be employed. An example of the calculation of
gshear flows in bending is given in table 4. Moments of inertia of the
cross sections and of the individual spars are given in table 1,

SOURCES OF ERROR

Brrors in the computed results due to inadequacy of the structural
theory cannot be estimated. However, other sources of error have been
estimated roughly as follows:

Error in computer, percent . . . . + « « ¢« ¢« . + 4 ¢ o« o s« « « E1.0
Error In meter, percent . . . « ¢« ¢ & ¢« ¢ ¢ ¢ ¢ ¢ o o o o o« « o EL.0
Error in reading meter, percent . . . . e e e e e e e $0.5
Error in computing stiffness constants, percent +1.0
Error from using difference equations . . . . . . (see figs. "10 and 11)

An inspection of the data obtained from the computer showed that the
total bending moments and shears on various cross sections violated statics
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by amounts ranging from 1 percent to 3 percent. A factor to correct for
this error was introduced at the same time that the electrical quantities
were converted to structural gquantities. The error in the computer which
is shown in the above tgble is an estimation of that error which remains
after the correction for statics has been introduced. The error in the
computer is due to parasitic effects in the components of the circuit.

Some error is contained in the meter which is used for measuring the
voltages or currents. Some additional human error is also involved in
reading the meter. The errors for the computer and the meter, as given
above, are applicable to the largest numbers which are given in the tables
of data. For the smaller quantities the percentage errors may be much
larger, even though the absolute size of the errors will be less.

In the case of the rectangular cross sections there are no errors
in the stiffness constants. However, in the case of the biconvex sec-
tions there is a small error. A more significent error arises from the
use of difference equations in expressing the structural theory. No
specific value has been given for this error since there is a large dif-
ference between the symmetric and antisymmetric cases. (See figs. 12
and 13.) In order to obtain an estimate of the error in deflections a
uniform beam was analyzed by solving difference equations and by solving
differential equations. The central span and external spans were each
divided into three parts in forming the difference equations. The beam
was assumed to be loaded with a concentrated force at each tip.

For the case of symmetric loads the ratio of deflections from d4if-
ference equations to deflections from differential equations is shown
in figure 12(b). Here the error is seen to vary between 2 and 3 percent.
The antisymmetric case is illustrated in figure 13(b). In this case the
error is more than five times as great as in the symmetric case. It is
obvious that an accurate treatment of deflections in the antisymmetric
case requires more stations along the span in forming the difference
equations or a more accurate formulation of the structural theory in
terms of difference equations. The effect of the use of difference
equations on the distribution of internal forces in the multicell wings
is not known. However, it can be shown that all relations of statics
between the internsl forces and applied loads are satisfied.

It is also of interest to estimate the error which would be made if
the deflections due to shearing strains were neglected. This requires tle
use of specific cross sections. Such an estimate was computed for the
wings with rectangular cross sections by using elementary beam theory.

The ratio of deflections due only to shearing strains to the total deflec-
tions, using differential equations, was computed and plotted. For sym-
metric loading the ratio is shown in figure 12(c) where it is seen that
the error varies from 2 to 6 percent.. For the antisymmetric case, which
is shown in figure 13(c), the ratio is approximetely five times as large.



NACA TN 3113 15

TREATMENT OF DATA FROM COMPUTING MACHINE

A simple check which can be made on the results from the computer
consists of comparing the total shear, bending moment, or torque on a
cross section with the value given by statics from the externasl loads.
When this check was made errors were found which ranged from approxi-
mately 1 to 3 percent. These errors were due to parasitic effects in the
computer and not to the use of difference equations for the structural
theory. The error did not show large variations over a given planar
circuit and hence it was decided that the voltages and currents in each
planar circuit should be corrected by a single scalar factor.

The correction factors were determined by applying statics to the
sections shown in figure 1%. For bending loads the correction factor
for both of the bending-moment circuits was determined to satisfy statics
for the bending moment over the support. The shear circult was corrected
to satisfy statics in the first bay outboard from the support. With tor-
sional loads the bending-moment circuits were corrected to give the cor-
rect section torque in the first bay outboard from the support. The
shear circuit was corrected to give the correct total shear on section D-D
as shown in figure lh(b). Since the shears in the spars contribute to the
section torque it is necessary to correct the shears first apd the twisting
moments subsequently.

DEFLECTIONS DUE TO BENDING LOADS

The results of the computations on the analog computer are given in
the tables available on loan from NACA. From these tables a small portion
of the data has been taken to prepare illustrations of cases which seemed
t0 be most interesting. For all of the bending cases which are illustrated
the loading consists either of two cormer loads at the tip or a single
load on the central spar at the tip.

The chordwise distribution of deflections at the tip is shown in fig-
ure 15 for the wing of aspect ratio 2 with rectangular cross section.
Both types of bending loads are applied symmetrically. For the central
load the effect of shearing strains in the rib is clearly evident. A
comparison is made with elementary beam theory using both differentisl
equations and difference equations. The solution for a plate of infinite
width with a uniform line load at the tip is also shown. This solution
is obtained from the solution for a beam by multiplying by 1 - uz. It
mey be seen that the average deflection of the wing structure is somewhere
between the values predicted by the two beam theories.
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The chordwise distributions of deflections for the wing of aspect
ratio 2 and biconvex section are shown in figure 16. In this figure a
central load is applied at the tip and a comparison is made between the
symmetric and antisymmetric cases. Both cases show fairly good agree-
ment with beam theory.

Chordwise distributions of deflections along each of the ribs are
shown in figure 17 for both wings of biconvex section. The graphs are
plotted as a ratio of computed deflection to the deflection from beam
theory.

The spanwise distributions of deflections for the leading-edge spar
and the central spar are shown in figure 18 for the wing of aspect ratio 2
with rectangular cross section. A comparison is given between the sym-
metric and antisymmetric cases.

SHEARS TN SPARS DUE TO BENDING LOADS

The chordwise distributions of shears in the spars at each ocutboard
bay are shown in figure 19 for both wings of rectangular section. The
ratio of shear from the computer to shear obtained from beam theory is
plotted. This ratio may also be regarded as a ratio of shearing stresses.

For the wing of aspect ratio 2 with biconvex section the shears in
the spars are illustrated in figure 20. A comparison is made of the dis-
tribution for a central load and for corner loads.

The spanwise distribution of shears in the leading-edge spar and
the central spar are shown in figure 21 for a wing of aspect ratio 2 with
rectangular cross section. Values obtained from beam theory are also
shown.

SHEARS IN RIBS DUE TO BENDING LQADS

A single illustration of shears in the ribs is given in figure 22
for the wing of aspect ratio 2 with rectangular section. The chordwise
distribution of shear in all of the ribs is shown. These distributions
are given for symmetrical cases of a central load and for corner loads.

BENDING MOMENTS IN SPARS DUE TO BENDING LOADS

From the spanwise bending moments one may compute the spanwise nor-
mal stresses., The ratio of spanwise normal stress from the computer to
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the same stress from beam theory was computed for all four wings for
symmetric bending loads. The stresses were computed for points over the
support and are shown in figure 23 for a central tip load and in fig- .
ure 24 for corner loads. It ie of interest to note that the maximum
variation from beam theory for the wing of aspect ratio 4 is only 3 per-
cent while the variation for the wing of aspect ratio 2 is 15 percent.

For each of the wings of aspect ratio 2 the normsl stresses over
the remaining ribs are shown in figure 25 for a central load. In regions
of smeller stress it is seen that the percentage variation from beam
theory becomes larger.

The spanwise variations of bending moment in the leading-edge spar
and central spar are shown in figure 26 for the beam of aspect ratio 2
with rectangular section. The effects of both corner loads and a central
load are compared with beam theory for the symmetric case. The corre-
sponding antisymmetric case 1s shown in figure 27.

BENDING MOMENTS IN RIBS DUE TO BENDING LOADS

An 1llustration of chordwise bending moments in all of the ribs is
shown in figure 28 for a wing of aspect ratio 2 with rectangular section.
The effects of a central load and of cornmer loads are compared for sym-
metric cases.

TWISTING MOMENTS DUE TO BENDING LOADS

The chordwise distributions of twisting moments in the various bays
are shown in figure 29 for the wing of aspect ratio 2 wilth rectangular
sectlon. A comparison is made between the effects of a central load and
corner loads. It may be seen that the twisting moments act in opposite
directions for the two types of loads in all bays which are outboard from
the fuselage.

DEFLECTIONS DUE TO TORSICNAL ILOAD

In preparing the illustrations for torsional loading the only loading
which has been considered is that of a pair of equal and opposite forces
at the corners. The chordwise distribution of deflections at- the tip is
shown in figure 30 for the wing of aspect ratio 2 with rectangular section.
The symmetric end antisymmetric cases show very close agreement. The maxi-
mm variation from beam theory is about 10 percent.
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The chordwise distribution of deflections for symmetric loads is
shown in figure 31 for the wing of aspect ratio 2 with a biconvex section.
The curveture of the rib in this case is more noticeable than in the pre-

vious figure.

For the wing of aspect ratio 4 with biconvex section the chordwise
distributions of deflectlions for symmetric loading are shown in figure 32..
A comparison with beam theory is given. The curveture of the tip rib is
noticeable.

Spanwise deflections of the leading-edge spar, and also the adjacent
spar, are shown in figure 33 for the wing of aspect ratio 2 with a rec-
tangular section. Symmetric and antisymmetric cases are compared with
beam theory. The same quantities are illustrated for the biconvex sec-

tion in figure 3k.

SHEARS IN SPARS DUE TO TORSIONAL LOAD

The chordwise distributions of shears in the spars are shown in fig-
ure 35 for both wings of aspect ratio 2. Ratios of shearing stress as
computed to shearing stress from beam theory are shown. In almost all
positions of the plan form the ratio is larger than unity. This is due
to the torsion-bending action inh which normal stresses arise because of

torsional loading.

The spanwise distribution of shear in the spars is shown in fig-
ure 36 for the wing of aspect ratio 2 with biconvex section. Large varia-

tions from beam theory are evident.
SHEARS IN RIBS DUE TO TORSIONAIL IL.OADS

The chordwise distributions of shears in the ribs are shown in fig-

ure 37 for the two wings with rectangular section. A comparison is shown
for the two aspect-ratio cases for symmetric loads.

BENDING MOMENTS IN SPARS DUE TO TORSICNAL LOAD

For purposes of illustration the bending moments in the spars have
been converted to normal stresses. The chordwise distributions of span-~
wise normal stress over the support are shown in figure 38 for the four
wings with symmetric loads. This illustration shows that the normal
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stresses due to torsion are more than twice as large in the wings of
lower aspect ratio. Similar results are given for the antisymmetric
case in figure 39.

The verigtion of spanwise normal stress along the leading-edge spar
is shown in figure 40 for the wings of aspect ratio 2. Results are shown
for both types of cross sections with symmetric and antisymmetric loading.
Corresponding stresses for the wings of aspect ratio 4 are shown in
figure 41.

BENDING MOMENTS IN RIBS DUE TO TORSIONAL LOADS

The bending moments in the ribs have again been converted to normal
stress. The distribution of chordwise normal stress in the various ribs
is shown in figure 42 for the wing of aspect ratio 2 with rectangular
section. Symmetric loading is considered.

TWISTING MOMENTS DUE TO TORSIONAL LOADS

The chordwise distributions of twisting moments for various bays
are shown in figure 43 for the wings of aspect ratio 2. The quantity
which is plotted is the ratio of computed twisting moment to the value
of twisting moment given by beam theory. In most of the bays the ratio
is less than unity. This is due to the torsion-bending action of the
structur%.

EFFECT OF SHEARING STRAINS IN RIBS AND SPARS

Throughout all of the analyses on the analog computer the effect of
shearing strains was taken into account. These shearing strains affect
not only the deflections but also the distribution of internal forces.

A few calculations were made on the assumption of an infinite shearing
stiffness for the ribs and spars. The effect of shearing strains upon
the distribution of shears in the spars is shown in figure 4l for the
wing of aspect ratio 4 with rectangular section. The change in shear
due to the existence of finite shearing strains is generally small and
is less than 10 percent in almost all cases.

The effect of shearing strains upon the spanwise normal stress over
the support is shown in figure 45 for the wing of aspect ratio 4 with
rectangulaer section. Symmetric bending and torsional loads are considered.
The effect of shearing strains upon the normel stress distribution is some-
what less than the effect upon shear distribution.
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ANATYSTS OF A GRIDWORK OF RIBS AND SPARS

In the analysis of a multicell beam the calculation work consists
of two parts. In the first part the normal stresses are computed from
the flexure formila and a statically determinste set of shear flows are
computed. In the second part of the analysis the indeterminate cellular
shear flows are computed. Consideration was given to the possibility of
developing a similar method of analysis for a multicell plate. In such
a method it would be assumed that the skin is cut to prevent it from
carrying any twisting moment. Shears and bending moments would be cal-
culated for the gridwork of ribs and spars. A subsequent calculation
would be made to determine cellular shear flows required to restore con-
tinuity of the skin.

The ebove method of solution is based on the assumption that the
distributlion of bending moments in the gridwork will be approximately
the same as the distribution in the multicell shell. In order to check
this assumption an analysis was made on the analog computer of the wing
of aspect ratio 2 as a gridwork. The results are compared with the
analysis of the complete wing in figure 46 for spanwise normal stress
over the support. From this figure it can be seen that with bending
loads the distribution from gridwork theory agrees fairly well with the
correct distribution for the wing. However, under torsional loading the
discrepancy is very large. Further research study would be required to
develop this method of analysis.

VIBRATION MODES

In order to determine vibration modes and frequencies on the analog
computer it is necessary to replace the resistors by inductors. It is
assumed that the inertia forces are provided by an equivalent set of con-
centrated masses. Each mass is represented in the analogous circuit by
a condenser which is connected to ground. An illustration with detailed
explanation of the vibration circuit for a beam is given in reference L.
In references 1, 2, and 4t the analogous circuits have been designed by
connecting the condensers to the circult at the deflection points. In
the present calculation work this technique has been modified in order to
obtain better accuracy.

It can be shown in certaln beam analyses based upon the use of dif-
ference equations that better accuracy can be obtained if the equivalent
concentrated masses are loceated at points midway between the deflection
points than if the masses are located at the deflection points. This
improvement in accuracy can also be shown to be true for a rectangular
simply supported plate. Consequently the wing modes have been computed
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by considering concentrated masses to act at points on the ribs and spars
midway between the intersection points of the ribs and spars. This divides
the total mass into approximately twice as many small concentrated masses
as would be obtained by assigning the masses to the deflection points.

This greater subdivision of the total mass should also tend to improve

the accuracy.

Symmetric modes for the wing of aspect ratio 2 with rectangular cross
section are illustrated in figure 47 by means of contour drawings. The
first bending mode in figure L7(a) shows very little camber. The mode
shape is the same as would be obtained from beam theory. The second
bending mode, as shown in figure 47(b), consists almost entirely of chord-
wise bending. This camber mode cannot be predicted by beam theory.

In the bending theory of Saint Venant the chordwise canmber is obtained
by multiplying the spanwise curvature by Poisson's ratio. If this rela-
tionship should tend to hold spproximately true under various loading con-
ditions it would provide a very convenient way of determining elastic cam-
ber effects in aeroelastic analyses. A consideration of the first two
bending modes as shown in figure 47 shows clearly that no relatiomship
between spanwise and chordwise curvatures can be assumed to hold under
verious loading conditions.

The first torsion mode is shown in figure 47(0). The frequency for
this mode lies between the two values for the first two bending modes.
The third bending mode is shown in figure 47(d).

The measured frequencies of the lowest modes in bending and torsion
were compared, for all four wings, with frequencies computed from beam
theory without shearing strains. For the bending cases the variation
from beam theory was less than 1 percent. The omission-of shearing
strains in the beam analysis compensated for the Poisson ratio effect in
the wing. In the torsion cases the discrepancy was somewhat greater for
the wing of aspect ratio 2. The wing of aspect ratio 4 showed a variation
of 1 percent while the wing of aspect ratio 2 showed a frequency 8 percent
higher than beam theory.

For the wing of aspect ratio 4 with rectangular section two symmetric
modes are shown in figure 48. The first torsion mode is shown in fig-
ure 48(a). The first three bending modes for this wing showed very little
evidence of camber. A small emount of camber is seen in the third bending
mode which is illustrated in figure L48(b).

The torsion modes can be illustrated more clearly by drawing deflec-
tion diagrams for the various ribs and spars. The deflections of the
spars in the first symmetric torsion mode are shown in figure 49 for the
wing of aspect ratio 2 wilth rectangular section. The curves do not show
the curvature that would be obtained from beam theory. For the same mode

e e e e ——————————— . ——
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the deflections of the ribs are shown in figure 50. The curves show an
appreciable amount of camber which is not predicted by beam theory.

The deflections of spars in the first symmetric torsion mode are
shown in figure 51 for the wing of aspect ratio L4 with rectangular sec-
tion. For the same mode the deflections of the ribs are illustrated
in figure 52. For the wing of aspect ratio L the deflections are more
nearly like those which would be obtained from beam theory.

CONCLUSIONS

In preparing the illustrations for this paper it has only been pos-
sible to consider a very small portion of the data which were computed. -
The reader will find that the data In the tables available on loan will
permit him to make a more thorough study of any particular case in which
he may be interested than could be given in the limited space herein
available. However, a few general statements can be made.

Under bending loads all of the wings show fairly good agreement with
beam theory. The wings of aspect ratio 2 show poorer agreement than the
wings of aspect ratio 4 but still agree, in general, more closely than one
would be inclined to expect. The spanwise normal stresses show about the
same percentage variation from beam theory as the deflections. The shearing
stresses in the skin and spars, however, show much poorer agreement than
the normal stresses.

Under torsional loading the wings show poorer agreement with beam
theory than under bending loads. This is apparently due to the fact that
torsional beam theory contains no effect of warping restraint (torsion-
bending effect). The warping restraint which actually exists causes nor-
mal stresses in the spars and brings @bout a redistribution of the internal
shear flows. It is clear that there is need for a practical theory of
torsion bending for multicell beams.

For the wing of aspect ratio 2 the second symmetric bending-vibration
mode consists almost entirely of chordwise camber. For the wing of aspect
ratio It the first three symmetric bending modes contained only a small )
amount of chordwise camber. From the results of these analyses it is not
unreasonsble to believe that for wings of very low aspect ratio the effects
of chordwise elastic camber should be included in aercelastic analyses.

In the torsionsl modes of vibration, due to the presence of warping
restraint, the deflections of the spars showed appreciably less curvature
near the tip than would be obtained from beam theory.
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The data considered herein required the use of the analog computer
for 4 weeks of normal working time. Consequently it may be concluded that
the anglysis of such complex structures as those herein considered is
practicable with large automatic computers.

Californiae Institute of Technology,
Pasadena, Calif., October 20, 1952.
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TABLE 1

ELEMENTARY STRUCTURAL PROPERTIES

(2) Material properties

Quantity Value
E, P81 . v v v ¢« ¢ ¢ v v 4 e e e o . . |10 X 106
G, PSL « v ¢« ¢ ¢« ¢ e s v s e e e o .| hoOoXx 10°
L e 6 o o o o o o o s o o o o o s o o 0.3
Specific weight, 1b/cu in. . . . . . 0.107

(b) Properties of total cross section

Rectangular section Biconvex section
Aspect ratio 2 4 2 i
Ip, in.lL e e . 88.4 386 3.4 318
J, mr oL 308 | 1,192 268 | 1,094

(¢) Relative moments of inertia of spars

Spar number
Section
1 5 5 T
Rectanguler . . . . . 1/6 1 1/6| 1/6| 1/i2
Biconvex . . . . . . [0.255 [0.220 | 0.128 | 0.0245
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TABLE 2

LOADED POINTS FOR VARIOUS CASES

Rectangular | Biconvex

section section

(a) (a)

Aspect ratio 2 4 2 4
Symmetric bending A T A | T
Symmetric torsion A T A T
Antisymmetric bending | T T T | T
Antisymmetric torsion T T T T

gA, all points loaded; T, tip points loaded.
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TABLE 3

NACA TN 3113

SHEAR FLOWS IN TORSION FROM BEAM THEORY

EBiconvex sectlon; aspect ratio, 2;
J=13k.0x 2 = 268 int

= |
8 14"
o
Y
o (skin). 75 75 Th.6
« 1(;:11::!)31‘ 31.0 28.7 21.9 10.4
AL ... .. 50.80 k2.8 26.96
)21 A 209.7 200.6 181..5
a...... (0.1478) |(0.1369) (0.1431) | (0.1092) (0.1207)
AL ... .. 50.8 ko.5 27.0
7.5 6.1 7.0 3.3 4.6
2.011.5 1.910.6 1.1
0.5 | 0.k 0.5]|0.1 0.3
0.1]0.1 0.1 0 0.1
69.0 56.0 33.1
10.2 | 8.0 9.k | k.1 6.1
E...... 69.0 56.0 33.1
q = N 0.658 0.558 0.365
Za
PAQ « . o . . 66.9 k7Y 19.7




NACA TN 3113 27
TABLE 4
SHEAR FLOWS DUE TO VERTICAL SHEAR FROM BEAM THEORY
l__]éiconvex section; aspect ratio, 2; total
section shear, 2 l‘lﬂ
- — _ R —
B—
Iy oo .. 18.84 16.20 9.40 1.79
(V5)s 0.512 0.0 0.255 0.0k9
hy ... .. b 3l k.02 3.06 1.46
‘(qj)s 0.1180 0.1093 0.0834 0.0336
d...... (0.1478) [(0.1369) (0.1431) |(0.1092) (0.1207) { (0.0573)
d (a4)g 0.0l74 | -0.0150  0.0156 | -0.0091  0.0101 | -0.0019
(0.1478) |(0.1431) (0.1369) | (0.1207) (0.1092)
0.0024 0.0065 0.0082
~-0.000L | 0.0009 0.0003 | 0.0009 0.0008
-0.0001 |0.0002 0.0001 | 0.0001 0.000L
0.0030 0.0079 0.0091
-0.0004 | 0.0011 0.000% | 0.0010 0.0010
Ay + o« o - 0.0031 0.0079 0.0092
(23)1 -0.0062 -0.0048 -0.0013 0.0092
Qg o+ e e - 0.1118 0.10L45 0.0821 0.0428
Vi oo e . 0.485 0.420 0.251 0.062
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Figure 24.- Spanwise normal stress over support.
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Figure 48.- Vibration modes.
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Figure 49.- Deflection of spars in first symmetric torsion mode.
Rectangular section. Aspect ratio; 2.
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Figure 50.- Deflection of ribs in first symmetric torsion mode.
Rectangular section. Aspect ratio, 2.
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Figure 51.- Deflections of spars in firstAsymmétfic torsion mode.
Rectangular section. Aspect ratio, 4.
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